What is Life?

A machine defining an inside and an outside, which reproduces and allows the expression of

A program (a "cookbook"), which replicates, and

A set of coupling processes, metabolism, which manages the flow of matter and
energy and regulates information recursively from the program's expression.

Replication First Cairns-Smith (1980) Slide 2

- Surface chemistry
 - Metallic surface attracts negative ions-phosphate
 - Polymerization by eliminating water (concentration)
 - Polyphosphates (monomer)
 - Replicating unit catalyzes monomer formation
• More efficient replicator/catalyst appears
 o No trace of former replicator

Information for A. Danchin’s Scenario (slide 3)

• **Molecular fossils are any contemporary structure or function which is ancient in origin and provides us with clues about the history of life**
 o Comparative Genomics
 ▪ Orthologs
 ▣ Minimal genomes
 ▪ Persistent Genes
 ▣ Horizontal Gene Transfer of gene/function networks
 ▣ Family genes defining a minimal set of functions required for the development of life
 • Function space re-defined
Network of conserved gene functions and arrangements

- RNA-mediated information transfer -connected
 - Ribosome, transcription (DNA into RNA), cell maintenance

- RNA metabolism -less connected
 - RNA wielding enzymes, tRNA synthetases
 - Cell-division

- Building Blocks genes –No longer connected
 - Nucleotides
 - Catalytic cores
 - Fe S centers, other metallo cores

- Amino acids, Lipid bilayers
 - Not translation-cell compartments
 - Thioesters
 - New Knowledge of Inorganic Chemistry
 - Features of Contemporary Biochemistry
- Insight into Nitrogen Reduction (N_2 to NH_3)
- Insight into Molecular Biology of RNA

Pre-biotic Surface Chemistry – Wächtershäuser Hypothesis (Slides 4 & 5)

- $FeS + H_2S \rightarrow FeS_2$ (iron pyrite) $+ H_2$
- Discovered by Wächtershäuser
- Happens anaerobically
 - Deep ocean smokers
 - High temperatures
 - Little to no oxygen
 - Gradient within smoker
 - Temperature
 - Oxygen
 - Surfaces for chemistry
 - Earliest organism-thermophilic
- Autotroph hypothesis –CO₂ polymer (reduction) coupled to energy

Two Dimensional Chemistry

- HCO₃⁻ + FeS + H₂S ⇒ HCOO⁻ + H₂O
 - Positive charge on surface attracts -PO₃, -COO⁻, -S⁻
 - Surface chemistry favors polymerization
- Contemporary fixation of carbon dioxide in a thermophilic archea
- Metal-sulfur origins of carbon fixation
- ACS/CODH uses FeS, Ni, Co coenzyme and Cu
- Reduces CO$_2$ to CO
- Channels CO to methane site
- Acetyl CoA can be produced
- Enzyme widely distributed
- Pyruvate synthase fixes another mole of CO$_2$
- FeS, ferredoxin
- Universal distribution of enolase
- Product 2-phospho-D-glycerate-first sterospecific intermediate
• RNA World Hypothesis

• Nitrogen fixation: Mo requirement
 - Mo pterin cofactor
 - Nucleotide synthesis: by product of nitrogen fixation
 - GTP cyclohydrolase reverse reaction
 - Fixation occurring on peptides (Platforms)
 - Sequestered in membranes
 - D-amino acids
• Oligonucleotides replacing peptides as surfaces (RNA metabolism era)
 o Membranes form
• RNA folds in three dimensions (RNA replication era)
 o Can be replicated
 o Division into catalytic and replicative molecules
 ▪ CCA signal
 ▫ tRNA and Ribosomes
• Degraded for energy (DNA era)
 o Polynucleotide phosphorylase
 o Di-nucleotides lead to deoxyribonucleotides
 ▪ Ferredoxin reduction
 ▪ Invention of thymine

Origin of Life A. Danchin